p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer

نویسندگان

  • Darjus F. Tschaharganeh
  • Wen Xue
  • Diego F. Calvisi
  • Matthias Evert
  • Tatyana V. Michurina
  • Lukas E. Dow
  • Ana Banito
  • Sarah F. Katz
  • Edward R. Kastenhuber
  • Susann Weissmueller
  • Chun-Hao Huang
  • Andre Lechel
  • Jesper B. Andersen
  • David Capper
  • Lars Zender
  • Thomas Longerich
  • Grigori Enikolopov
  • Scott W. Lowe
چکیده

The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protein nestin in an Sp1/3 transcription-factor-dependent manner and that Nestin is required for tumor initiation in vivo. Moreover, loss of p53 facilitates dedifferentiation of mature hepatocytes into nestin-positive progenitor-like cells, which are poised to differentiate into hepatocellular carcinomas (HCCs) or cholangiocarcinomas (CCs) in response to lineage-specific mutations that target Wnt and Notch signaling, respectively. Many human HCCs and CCs show elevated nestin expression, which correlates with p53 loss of function and is associated with decreased patient survival. Therefore, transcriptional repression of Nestin by p53 restricts cellular plasticity and tumorigenesis in liver cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis.

ARF encodes a potent tumor suppressor that antagonizes MDM2, a negative regulator of p53. ARF also suppresses the proliferation of cells lacking p53, and loss of ARF in p53-null mice, compared with ARF or p53 singly null mice, results in a broadened tumor spectrum and decreased tumor latency. To investigate the mechanism of p53-independent tumor suppression by ARF, potential interacting protein...

متن کامل

Tumor and Stem Cell Biology Tumor Suppressor miR-22 Determines p53-Dependent Cellular Fate through Post-transcriptional Regulation of p21

Selective activation of p53 target genes in response to various cellular stresses is a critical step in determining the ability to induce cell-cycle arrest or apoptosis. Here we report the identification of the microRNA miR-22 as a p53 target gene that selectively determines the induction of p53-dependent apoptosis by repressing p21. Combinatorial analyses of the AGO2 immunocomplex and gene exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2014